OPEN SECTION THIN-WALLED BEAM

Procedure of the exercise:

1) First analysis of the beam's model with two load subcases (case 1 and case 2)
2) Second analysis of the beam's model with third load subcase for which the applied force acts through the shear center (case 3)

PROBLEM DESCRIPTION

In the open thin-walled section a shear load Sy is applied through the shear center (S.C.) of the section.

Details of the cross-section shape and the force application point are shown on the right.

Determine:

a) position of the shear center ($\mathrm{X}_{\text {s.c. }}$)

The model of the beam with open thinwalled section will be created. The appropriate load and boundary conditions will be applied to it.

There will be 3 load subcases:

- $1^{\text {st }}$ load subcase
- $\quad 2^{\text {nd }}$ load subcase
- $3^{\text {rd }}$ load subcase

Units: mm, N, MPa

OPEN SECTION THIN-WALLED BEAM

A white background of all figures is obligatory.

OPEN SECTION THIN-WALLED BEAM

GEOMETRY CREATION

a. Change Background Color to White (click on the Cycle Background icon)
b. Click on the Front view icon
c. Click on the Point size icon

Create geometry points using coordinates from Table 1:
d. Click on Geometry tab and choose Create/Point/XYZ from right menu
e. Uncheck Auto Execute
f. Enter coordinates of the first point [60 140 0] in Point Coordinate List
g. Click Apply
h. Repeat steps $d \div g$ for the rest of the points

Table 1. Geometry points coordinates

No.	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
$\mathbf{1}$	60	140	0
$\mathbf{2}$	60	100	0
$\mathbf{3}$	0	100	0
$\mathbf{4}$	0	-100	0
$\mathbf{5}$	60	-100	0
$\mathbf{6}$	60	-140	$\mathbf{0}$

Create surfaces using existing curves:

a. Geometry: Create/Surface/Extrude
b. Translation Vector: <00-1000>
c. Uncheck Auto Execute
d. Click on the Curve List panel
e. Select all curves in order to create surfaces
f. Click Apply

In Home tab:

g. Click on the Iso 1 view icon
h. Click on the Fit view icon
i. Click on the Smooth shaded icon

Save the figure of the geometrical model (remember about white background):
j. File/Images...
k. Choose Image Format: JPEG
l. Click Apply

OPEN SECTION THIN-WALLED BEAM

MESH CREATION

In Home tab:

a. Click on the Front view icon
b. Click on the Fit view icon

Create mesh seeds:

c. Click on the Meshing tab
d. Meshing: Create/Mesh Seed/Uniform
e. Select Number of Elements
f. Enter 4 as the Number (of elements)
g. Uncheck Auto Execute
h. Click on Curve List panel
i. Select Curve icon
j. Select two shorter vertical curves: Curve 1 and Curve 5 (holding Shift button)
k. Click Apply
I. Repeat steps $f \div \mathrm{j}$ for the rest of the curves according to the figure below:

In Home tab:

a. Click on the Iso $\mathbf{1}$ view icon
b. Click on the Fit view icon
c. Click on the Smooth shaded icon

Create mesh seeds on one edge along beam's length:
d. Click on the Meshing tab
e. Meshing: Create/Mesh Seed/Uniform
f. Select Number of Elements
g. Enter 50 as the Number (of elements)
h. Uncheck Auto Execute
i. Click on Curve List panel
j. Select Edge icon
k. Select one edge along beam's length
I. Click Apply

The following figure shows the geometrical model with the mesh seeds.

Create mesh:
a. Click on the Meshing tab
b. Meshing:

Create/Mesh/Surface
c. Elem Shape: Quad

Mesher: IsoMesh
Topology: Quad4
d. Click on Surface List panel
e. Select all surfaces
f. Click Apply

The following figure shows the FE model beam model with the mesh seeds.

Delete the duplicate nodes:
a. Click on Meshing tab
b. Equivalence/All/Tolerance Cube
c. Click Apply

The figure below shows the FE model of the beam after deletion of the duplicate nodes.

OPEN SECTION THIN-WALLED BEAM

FIXING OF THE MODEL

Apply the boundary conditions:
a. Go to Loads/BCs tab
b. Create/Displacement/Nodal
c. Enter constraint as the New Set Name
d. Click Input Data...
e. Enter $\langle\mathbf{0 , 0 , 0} \mathbf{0}$ for the Translations
f. Enter $\langle\mathbf{0 , 0 , 0}\rangle$ for the Rotations
g. Click OK
h. Click Select Application Region...

The following figure shows the fixing of the beam's model (rear view).

OPEN SECTION THIN-WALLED BEAM

CREATION OF THE ADDITIONAL SURFACE AND ITS MESHING

The additional surface is created for the possibility of the load application.
The applied load will generate bending and torsion of the beam simultaneously.

Creation of the additional surface:

In Home tab:

a. Click on the Iso $\mathbf{1}$ view icon
b. Click on the Fit view icon

In Geometry tab:

c. Choose Create/Surface/XYZ from right menu
d. Enter <460 $\mathbf{2 8 0} 0$ > as Vector Coordinates List
e. Uncheck Auto Execute
f. Enter [-200 -140 0] as Origin Coordinates List
g. Click Apply

The figure below shows the model after creation of the additional surface.

Create mesh seeds on additional surface's edges:
a. Click on the Meshing tab
b. Meshing: Create/Mesh Seed/Uniform
c. Select Number of Elements
d. Enter 46 as the Number (of elements)
e. Uncheck Auto Execute
f. Click on Curve List panel
g. Select Edge icon
h. Select longer edge of the additional surface no. 6
i. Click Apply

Create mesh seeds on additional surface's edges:
a. Enter $\mathbf{2 8}$ as the Number (of elements)
b. Uncheck Auto Execute
c. Click on Curve List panel
d. Select Edge icon
e. Select shorter edge of the additional surface no. 6
f. Click Apply

The following figure shows the beam's model with all mesh seeds including the mesh seeds on the additional surface.

Create mesh:
a. Click on the Meshing tab
b. Meshing: Create/Mesh/Surface
c. Elem Shape: Quad

Mesher: IsoMesh
Topology: Quad4
d. Click on Surface List panel
e. Select the additional surface: Surface no. 6
f. Click Apply

The figure below shows the meshed additional surface.

Delete the duplicate nodes:
a. Click on Meshing tab
b. Equivalence/All/Tolerance Cube
c. Click Apply

The figure below shows the FE model of the beam with the additional surface after deletion of the duplicate nodes.

OPEN SECTION THIN-WALLED BEAM

LOAD APPLICATION

Apply load for the $1^{\text {st }}$ load case:
a. Click on the Loads/BCs tab
b. Loads/BCs: Create/Force/Nodal
c. Enter force_1 as the New Set Name
d. Click Input Data...
e. Enter <0,5000,0> for the Force
f. Click OK
g. Click Select Application Region...

h. Select Geomtery

i. Click on the Select Geometry Entities panel
j. Select the Point or Vertex icon
k. Select the bottom left corner of the additional surface
I. Click Add
m. Click OK
n. Click Apply in Load/Boundary Conditions right menu

Apply load for the $2^{\text {nd }}$ load case:
a. Enter force_2 as the New Set Name
b. Click Input Data...
c. Enter <0,5000,0> for the Force
d. Click OK

f. Select Geomtery
g. Click on the Select Geometry Entities panel
h. Select the Point or Vertex icon
i. Select the bottom right corner of the additional surface
j. Click Add
k. Click OK
I. Click Apply in Load/Boundary Conditions right menu
m. Top menu: Display and click on Load/BC/Elem. Props...
n. In Loads/BCs change color from yellow to red for Force
o. Click Cancel

The following figure shows the FE model of the beam with applied loads and boundary conditions.

Note: geometry of the model is displayed because load and fixing have been applied to the geometrical entities.

Save the figure of the FE model of the beam with applied loads and boundary conditions (remember about white background):
a. File/Images...
b. Choose Image Format: JPEG
c. Click Apply

OPEN SECTION THIN-WALLED BEAM

MATERIAL PROPERTIES DEFINITION

Define material properties
(isotropic; linear elastic; aluminum, $\mathrm{E}=70000 \mathrm{MPa} ; \mathrm{v}=0.33$):
a. Click on the Properties tab
b. Create/Isotropic/Manual Input
c. Enter aluminum as the Material Name
d. Click Input Properties...
e. Enter $\mathbf{7 0 0 0 0}$ as Elastic Modulus and $\mathbf{0 . 3 3}$ as Poisson Ratio
f. Click OK
g. Click Apply

OPEN SECTION THIN-WALLED BEAM

MATERIAL PROPERTIES ASSIGNMENT

Assign the properties to the model:
a. Properties: Create/2D/Shell
b. Enter shell as the Property Set Name
c. Click Input Properties...
d. Click on the Mat Prop Name icon
e. Select aluminum
f. Enter 5 as the Thickness
g. Click OK
h. Click Select Application Region...

In Home tab:
a. Click on the Iso 1 view icon
b. Click on the Fit view icon
c. Select Entities
d. Click on the Select Members panel
e. Select Surface or face icon
f. Select all surfaces
g. Click Add
h. Click OK

a. Click Apply

In this way the material properties have been assigned to the beam's model.

The property set name „shell" has been created. The following window will appear after clicking Appy.

OPEN SECTION THIN-WALLED BEAM

LOAD SUBCASES CREATION

a. Click on the Loads/BCs tab
b. Click on the Create Load Case in Load Cases
c. Enter case_1 as the Load Case Name
d. Uncheck Make Current
e. Click Input Data...

f. Click once on the Displ_constraint
g. Click once on the Force_force_1

a. Enter case_2 as the Load Case Name
b. Uncheck Make Current
c. Click Input Data...

OPEN SECTION THIN-WALLED BEAM

ANALYSIS WITH TWO SUBCASES

Run a linear static analysis:
m. Click Subcase Select...
n. Click Unselect All
o. Select case_1
p. Select case_2

Then, "case_1" and "case_2" will appear under "Subcases Selected:".

It means that two load cases will be solved during one run.
q. Click OK
r. Click Apply

OPEN SECTION THIN-WALLED BEAM

ATTACHING THE RESULTS

Attach the results file, when the analysis job is completed:
a. Click on Analysis tab
b. Access Results/Attach XDB/Result Entities
c. Click Select Results File...
d. Select open_section.xdb file and click OK
e. Click Apply

OPEN SECTION THIN-WALLED BEAM

POSTPROCESSING OF THE RESULTS

Postprocess the results:

a. Click on the Results tab
b. Results: Create/Quick Plot

It can be noticed that there are 2 cases avialable for postprocessing of the results.

The required plots with the results for BOTH cases (case 1 and case 2):

1) Fringe Result: Displacements, Translational

Quantity: Magnitude

Deformation Result: Displacements, Translational
2) Fringe Result: Displacements, Translational

Quantity: Y
Deformation Result: Displacements, Translational
3) Fringe Result: Stress Tensor

Position... AT Z1 and $\mathbf{Z 2}$ with Maximum option
Quantity: von Mises
Deformation Result: Displacements, Translational
Total number of plots with the results for BOTH cases $=2$ (cases) $\times 3$ (plots) $=6$

For each plot set the following options:
a. Click on Reset Graphics icon \rightarrow 为 in Home tab
b. Click on the Fringe Attributes icon
c. Select Element Edges as Display
d. Click on the Deform Attributes icon
e. Select True Scale
f. Uncheck Show Undeformed
g. Click Apply
e
Show Spectrum
\square Show Viewport Legend

\square Show Title $\quad \square$ Lock Title
\square Show MaxMin Label
\square show Fringe Label

\checkmark Show on Deformed
Element Shrink Factor
Element Shrink Factor
Element Shrink Factor

\checkmark Show Viewport Legend

Scale Factor $\quad 1.0$
f
f

Deformed:

Render Style:

Line Style:

Line Midth:

Scale Interpretation

Model Scale © True Scale

Verify the results with this reference

$1^{\text {st }}$ case, displacement magnitude

$2^{\text {nd }}$ case, displacement magnitude

$1^{\text {st }}$ case, von Mises, Z1 and Z2

$1^{\text {st }}$ case, displacement Y

$2^{\text {nd }}$ case, displacement Y

OPEN SECTION THIN-WALLED BEAM

CALCULATION OF THE SHEAR CENTER ${ }_{\mu} X^{\prime \prime}$ COORDINATE based on the data obtained from the analysis

$$
X_{\text {s.c. }}=?
$$

Check the value of the displacement in the vertical direction Y

 of the two nodes located on the bottom edge of the additional surface:

Reset Graphics
a. Results tab: Create/Cursor/Vector
b. Select Result Cases: case_1, A1:Static Subcase
c. Select Cursor Vector: Displacements, Translational
d. Position...((NON-LAYERED))
e. Target Entity: Nodes
f. Click Apply

After clicking Apply the following window will appear.
After selection of the desired node you will see:
1 Node ID
2 its 3 components of displacement (XX, YY, ZZ)
g. Select the bottom left corner of the additional surface
h. Read and write down the YY value for the bottom left corner of the additional surface
i. Select the bottom right corner of the additional surface
j. Read and write down the YY value for the bottom right corner of the additional surface
k. Repeat $a \div j$ steps for case_2

You should write down 4 different values of displacements (2 displacement values per one case).

Based on the vertical displacements of chosen two nodes (YY) from both analyses (Case 1 and Case 2) the following table can be done.

Based on the vertical displacements of chosen two nodes (YY) from both analyses (Case 1 and Case 2) the following graph can be done.

OPEN SECTION THIN-WALLED BEAM

APPLICATION OF LOAD THROUGH THE SHEAR CENTER

The task is to apply the force acting through the shear center.

The value of this force is equal to 5000 [N].

3 View Corners

4 Mark the desired region

a. Meshing tab: Modify/Node/Offset
b. Direction Vector: <3.3100>
c. Uncheck Auto Execute
d. Select Node list panel and select the node which has the following coordinates: $(-30,-140,0)$
e. Click Apply

It can be seen that the location of this node has been changed along X axis.

Apply load for the $3^{\text {rd }}$ load case:
a. Click on the Loads/BCs tab
b. Loads/BCs: Create/Force/Nodal
c. Enter force_3_SC as the New Set Name
d. Click Input Data...
e. Enter $\langle\mathbf{0 , 5 0 0 0}, 0\rangle$ for the Force
f. Click OK
g. Click Select Application Region...
h. Select FEM
i. Click on the Select Nodes panel

The figure below shows the third force acting through the shear center.
j. Select the Node icon
k. Select the „shifted" node
I. Click Add
m. Click OK
n. Click Apply

a. Click on the Loads/BCs tab
b. Click on the Create Load Case in Load Cases
c. Enter case_3_SC as the Load Case Name
d. Uncheck Make Current
e. Click Input Data...
f. Click once on the Displ_constraint in Select Individual Loads/BCs
g. Click once on the Force_force_3_SC in Select Individual Loads/BCs

You will see the assigned loads and boundary conditions to the load subcase no. 3.

Note: You can delete the row in Assigned Loads/BCs by selecting the appropriate row (clicking on it) and clicking on Remove Selected Rows.
h. Click OK
i. Click Apply

Run a linear static analysis:
a. Click on the Analysis tab
b. Choose Analyze/Entire Model/Full Run from right menu
c. Enter open_section_SC as the Job Name
d. Click Solution Type...
e. Select LINEAR STATIC as the Solution Type
f. Click Solution Parameters...
g. Click Results Output Format...
h. Uncheck Print
i. Click OK
j. Click OK
k. Click OK
I. Click Subcase Select...
m. Click Unselect All
n. Select case_3_SC

Then, "case_3_SC" will appear under "Subcases Selected:".
o. Click OK
p. Click Apply

Attach the results file, when the analysis job is completed:
a. Click on Analysis tab
b. Access Results/Attach XDB/Result Entities
c. Click Select Results File...
d. Select open_section_SC.xdb file and click OK
e. Click Apply

Verify the results with this reference

In Deform Attributes set Model Scale: 0.1

The required plots with the results for $3^{\text {rd }}$ case:

1) Fringe Result: Displacements, Translational

Quantity: Magnitude
Deformation Result: Displacements, Translational
2) Fringe Result: Stress Tensor

Position... AT $\mathbf{Z 1}$ and $\mathbf{Z 2}$ with Maximum option
Quantity: von Mises
Deformation Result: Displacements, Translational
Total number of plots with the results for $3^{\text {rd }}$ case $=1$ (case) $\times 2$ (plots) $=2$

$3^{\text {rd }}$ case, displacement
magnitude

$3^{\text {rd }}$ case, von Mises,
Z1 and $\mathrm{Z2}$

Report should also contain:

a) Figures:

1) Geometrical model of the beam (1 figure)
2) FE model of the beam with load and boundary conditions (1 figure)
3) 8 plots with the results for 3 cases (8 figures $=2 \times 3+2$)

Total number of figures $=1+1+8=\underline{10}$

A white background of all figures is obligatory.
A date on the plots with the results is obligatory.
b) Table with:

- the vertical displacements of chosen two nodes (YY) [mm]
- the calculated delta values [mm]
- the X coordinate [mm]
from both analyses (Case 1 and Case 2)

Note: the chosen nodes should be specified based on some description (not on the number) e.g. Node 1 is located in the bottom left corner of the additional surface.

Report should also contain:

c) Graph of function connecting coordinates of two points
d) Equation generated based on the trend line
e) The X coordinate of the shear center relative to the web ($X_{\text {s.c. }}$) calculated based on the data from the program (see: Table which should be filled with the appropriate values)
f) Relative error between $X_{\text {s.c. }}$ from the graph obtained based on the data from the program and $\mathrm{X}_{\mathrm{S} . \mathrm{c} \text {. theoretical }}$ from analytical calculations (see: homework)
g) Definition of the shear center
i) Conclusions

